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Abstract
The effective population size (Ne) is a fundamental parameter in population genetics 
that determines the relative strength of selection and random genetic drift, the effect 
of migration, levels of inbreeding, and linkage disequilibrium. In many cases where it 
has been estimated in animals, Ne is on the order of 10%–20% of the census size. In 
this study, we use 12 microsatellite markers and 14,888 single nucleotide polymor-
phisms (SNPs) to empirically estimate Ne in Aedes aegypti, the major vector of yellow 
fever, dengue, chikungunya, and Zika viruses. We used the method of temporal sam-
pling to estimate Ne on a global dataset made up of 46 samples of Ae. aegypti that in-
cluded multiple time points from 17 widely distributed geographic localities. Our Ne 
estimates for Ae. aegypti fell within a broad range (~25–3,000) and averaged between 
400 and 600 across all localities and time points sampled. Adult census size (Nc) esti-
mates for this species range between one and five thousand, so the Ne/Nc ratio is 
about the same as for most animals. These Ne values are lower than estimates available 
for other insects and have important implications for the design of genetic control 
strategies to reduce the impact of this species of mosquito on human health.

K E Y W O R D S

arbovirus, chikungunya, dengue, effective population size, genetic control, temporal sampling, 
yellow fever, Zika

1  | INTRODUCTION

The effective population size (Ne) is a conceptual, idealized parameter, 
almost always much smaller that census size due to a number of de-
mographic factors such as unequal sex ratios, population fluctuations, 
and unequal contribution to reproduction. Ne is a fundamental param-
eter in population genetics because the relative strength of selection 
and random genetic drift in populations as well as other basic proper-
ties such as the effect of migration and levels of genetic variation, in-
breeding, and linkage disequilibrium scale with changes in Ne. In many 
cases where it has been estimated, Ne is on the order of 10%–20% of 

the census size (Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010; 
Palstra & Fraser, 2012).

The recent boom in the use of genetic methods to control trans-
mission of vector-borne diseases requires knowing the Ne of tar-
get vectors in order to design the interventions and predict their 
probability of success. Aedes aegypti, the major vector of yellow 
fever, dengue, chikungunya, and Zika viruses, has become a model 
for efforts of genetic control of disease vectors. Control programs 
may involve suppressing or genetically modifying populations to 
decrease their efficiency at transmitting pathogens (McGraw & 
O’Neill, 2013).
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Accounting for Ne can improve vector control because Ne is not 
only directly related to census size and population structure, but is also 
a key parameter in modeling the rate of evolutionary change. A large 
Ne generally provides a buffer from the negative effects of inbreeding 
and allows for more rapid adaptive change by natural selection (Ohta, 
1992; Olson-Manning, Wagner, & Mitchell-Olds, 2012). On the other 
hand, a small Ne increases the negative effects of inbreeding and the 
rate of fixation or loss of genetic variation by the process of genetic 
drift (Ohta, 1992). Strong genetic drift could cause even selectively ad-
vantageous alleles to drift out of populations over time. Thus, account-
ing for this key population parameter in Ae. aegypti control efforts 
can minimize risk of evolved resistance and maximize the spread and 
maintenance of traits that are desirable for reducing impact of Ae. ae-
gypti on human health. Previous estimates from Australia, Thailand, 
and Indonesia using microsatellites, and estimates from Thailand using 
SNPs, have indicated Ne ranges from 11 to 5,564, suggesting relatively 
small breeding units regardless of the level of urban development 
(Endersby et al., 2011; Olanratmanee et al., 2013; Rašić et al., 2015).

During our ongoing worldwide survey of genetic variation in Ae. ae-
gypti (Brown et al., 2011; Evans et al., 2015; Gloria-Soria, Brown, 
Kramer, Yoshimizu, & Powell, 2014; Gloria-Soria, Ayala, et al., 2016), we 
have obtained temporal genetic data (microsatellites and SNPs) on sam-
ples from the same population separated by one to 7 years. Elsewhere, 
we reported on the genetic stability of populations over time relative 
to geographic differentiation (Gloria-Soria, Kellner, et al., 2016). Here, 
we use these data to estimate Ne in 17 Ae. aegypti populations occupy-
ing a wide range of ecological settings from around the world. Ne can 
be estimated in various ways (Anderson, 2005; Jorde & Ryman, 2007; 
Krimbas & Tsakas, 1971; Luikart et al., 2010), and we have used several 
appropriate to our data (microsatellite allele frequencies and SNPs), life 
history (overlapping generations), and age of populations (young).

2  | MATERIALS AND METHODS

2.1 | Mosquito collections and DNA extraction

Aedes aegypti adults, larvae, or eggs were received from 17 localities 
worldwide (Table 1, Figure 1). When necessary, we completed addi-
tional laboratory work and scored microsatellite alleles and SNP-chip 
genotypes following the same standards as for previous work reported 
from our lab. New samples arrived as either eggs from oviposition 
traps or as larvae/adults in 70%–100% ethanol from multiple traps or 
larval breeding sites to avoid sampling siblings. Eggs were hatched at 
the Yale School of Epidemiology and Public Health insectary, reared 
to adults, and stored in 100% ethanol at −20°C until DNA extraction. 
Genomic DNA was extracted using the DNeasy Blood and Tissue kit 
(Qiagen, Hilden, Germany), with a preliminary homogenization step in 
a TissueLyser II bead beater (Qiagen) and RNAse A (Qiagen).

2.2 | Genotyping 12 microsatellites and 14,888 SNPs

For the microsatellite genotyping, we used the protocol described in 
(Brown et al., 2011) for 12 loci; A1, B2, B3, A9, AC2, CT2, AG2, AC4, 

AC1, AC5, AG1, and AG4. Briefly, amplifications were performed 
using standard PCR protocol (35 cycles at 54°C) with fluorescently 
labeled M13 primers (6-FAM and HEX) in 10.0 μl reaction volumes 
using the Type-it Microsatellite PCR Master Mix (Qiagen), then di-
luted, multiplexed, and submitted for fragment analysis with GS 500 
ROX internal size standard (Applied Biosystems, Foster City, CA, USA) 
on an Applied Biosystems 3730xl DNA Genetic Analyzer at the DNA 
Analysis Facility on Science Hill at Yale. Alleles were scored using 
GeneMapper v4.0 (Applied Biosystems).

For the SNP-chip genotyping, 167 samples were analyzed on 
the Axiom_aegypti1 SNP-chip (Evans et al., 2015) at the Functional 
Genomics Core at University of North Carolina, Chapel Hill, using 
manufacturer protocols. Raw data were processed and converted 
into genotype calls following Evans et al. (2015) using Genotyping 
Console v4.2 (Affymetrix, Santa Clara, CA, USA) and SNPolisher v1.4 
(Affymetrix) in the R environment with the call threshold set to 95%. 
SNPs were pruned to remove any linked SNPs in PLINK v1.7 (Purcell 
et al., 2007) with the command ‘–indep 100 10 2′, which recursively 
removed SNPs within a sliding window of 100 SNPs wide, shifting 10 
SNPs per step, with a variance inflation factor (i.e., VIF) threshold of 2.

2.3 | Assessment of temporal stability and sibling 
relationships

Previous work has shown that some Ae. aegypti populations have un-
dergone temporal shifts in allele frequencies (Gloria-Soria, Kellner, 
et al., 2016). To identify any regions in this larger dataset where whole 
populations might have received an influx of migrants or otherwise 
been disrupted in a way that would make temporal methods of Ne 
estimation difficult to apply (Luikart et al., 2010), we estimated popu-
lation structure among and between multiple time points using prin-
cipal components analysis (PCA), and neighbor-joining phylogenetic 
analysis. We subjected all microsatellite data to principal components 
analysis (PCA) with the ‘adegenet’ package v 1.4-2 (Jombart, 2008) in 
the R v3.0.2 environment (R Development Core Team, 2013), and vis-
ualized using JMP v11.0 (SAS Institute Inc., Cary, NC, USA). We then 
estimated the optimal neighbor-joining (NJ) tree (Saitou & Nei, 1987) 
of genetic distances (Cavalli-Sforza & Edwards, 1967) with support 
values based on 1000 bootstrap replicates using NEIGHBOR imple-
mented in PHYLIP v3.69 (Felsenstein, 1989, 2005).

To identify instances where the presence of related individuals 
could artificially increase the variance in the estimated allele frequen-
cies and thus decrease the estimates of Ne, we identified full siblings 
using COLONY v2.0.6.3 (Jones & Wang, 2010). We then performed 
estimates of Ne with siblings removed for comparison with our main 
results. For this dataset, we randomly removed all but two individuals 
for each inferred full sibling group.

2.4 | Estimates of Ne

Ne was estimated with the two-sample temporal methods (Waples, 
1989) based on coalescence theory in CoNe (Anderson, 2005) and 
based on F-statistic moments (Jorde & Ryman, 2007) in NeEstimator v2 
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(Do et al., 2014), as well as with the single-sample LD method (Waples 
& Do, 2008), also in NeEstimator v2. These estimates complement one 
another because they represent the three main types of Ne estimators 
(coalescence Ne, variance Ne, and inbreeding Ne, respectively), thus 
having different strengths, weaknesses, and known biases. For exam-
ple, the two-sample coalescence method of Anderson (2005) and the 
F-statistic moments method of Jorde and Ryman (2007) are robust in 
the case of overlapping generations and can deal with lower levels of 
polymorphisms (Luikart et al., 2010), but they calculate a single esti-
mate across two time points and so are vulnerable to gene flow and 
fixation of rare alleles during the time interval between samples (Jorde 
& Ryman, 2007; Anderson, 2005), whereas the LD method (Waples & 
Do, 2008) is less vulnerable to gene flow and fixation of rare alleles, 
but runs the risk of bias caused by overlapping generations. Moreover, 
it does not provide enough power to distinguish from infinite popula-
tion sizes in the case of insufficient polymorphisms (Hill, 1981; Waples 
& Do, 2008).

We estimated 95% confidence intervals using the points where 
the log-likelihood dropped 1.96 units from the maximum in CoNe 
(Anderson, 2005), and using the parametric method in NeEstimator 
v2 (Do et al., 2014). The number of generations per year used (Table 
S1) equaled the number of months of the year wherein monthly av-
erage minimum temperature was above 10°C in 2013 according to 
Weather Underground’s (The Weather Company, San Francisco, CA, 
USA) closest station. This estimate was based on experimental evi-
dence that Ae. aegypti eggs do not develop at temperatures below 
10°C (Christophers, 1960).

3  | RESULTS

Estimates of effective population size (Ne) of Aedes aegypti from 17 
localities (Figure 1) and 47 time points (Table S1) obtained through 
multiple methods indicate small breeding units that ranged from 25 to 
3610 and averaged less than 600 individuals (Table 1). The Jorde and 
Ryman (2007) method yielded estimates that averaged 290.3 (Table 1, 
Figure 2), while the Anderson (2005) method yielded generally higher 
estimates (Fig. S3) that averaged 535.1 (Table 1). These results are in 
line with previous studies in Ae. aegypti conducted at local geographic 
scales (Endersby et al., 2011; Olanratmanee et al., 2013; Rašić et al., 
2015) and suggest localized breeding units even where regional cen-
sus size is large.

3.1 | Assessment of temporal stability and sibling 
relationships

We found evidence of temporal disruptions in Houston, Coatzacoalcos, 
Cachoeiro, Goudiry, and Lunyo. Evidence included separation of mul-
tiple time points along the first four axes of the PCA (Fig. S1), and 
closer relationships between distant geographic locations than be-
tween multiple time points from the same location in neighbor-joining 
phylogenetic analysis (Fig. S2). We compared results with exclusion 
of these localities that have a heightened risk of violation of the 

assumptions to confirm consistency of results. Results from COLONY 
indicate the presence of siblings in the samples at some localities such 
as Patillas and Lunyo (Table S1), but very few siblings in many locali-
ties. We compare results with exclusion of siblings to confirm that 
conclusions of the study were not impacted and find there is no sig-
nificant difference (t-test p-value .4462) in mean estimates with and 
without sibling removal (Fig. S5).

3.2 | Estimates of Ne based on microsatellite data

We estimated Ne with two different temporal methods that are ro-
bust to the potential bias introduced by overlapping generations 
(Luikart et al., 2010; Waples, 1989). We combined datasets previously 
generated in our laboratory at Yale University (Brown et al., 2011; 
Gloria-Soria et al., 2014; Gloria-Soria, Ayala, et al., 2016; Gloria-Soria, 
Kellner, et al., 2016; Monteiro et al., 2014; Pless et al., 2017 in review) 
with newly genotyped mosquitos. The final microsatellite dataset 
included 12 loci from an average of 46.7 individuals per time point 
sampled (Table S1). Ne estimates from the Jorde and Ryman (2007) 
method implemented in NeEstimator v2 (Do et al., 2014) averaged 
303.3 (Figure 2) and ranged from 25.0 to 1181.0 with the exception 
of a single outlier of 2662.0 (Ne

1 in Table 1), with narrow 95% confi-
dence intervals that ranged from an absolute low of 14.4 (lower CI1 
in Table 1) to an absolute high of 3714.0 (upper CI1 in Table 1). Ne 
estimates with the Anderson (2005) method were not significantly dif-
ferent, but were on average 1.32 times higher (Fig. S3), and averaged 
515.4 and ranged from 37.9 to indistinguishable from infinite (Ne

2 in 
Table 1), with 95% confidence intervals that spanned from an abso-
lute low of 26.3 (lower CI2 in Table 1) to a high of infinite (upper CI2 in 
Table 1). As expected, localities with evidence of temporal disruptions 
had smaller Ne estimates than genetically stable localities, but removal 
of these few localities increased average Ne estimates only slightly to 
349.8 and 626.5 (Table 1).

To determine whether variation in the length of the time interval 
between collections and the number of generations per year used in 
the calculations introduced bias, we conducted a t-test that confirmed 
that number of generations per year did not significantly impact Ne 
estimates for either temporal method (p-value of .8892 and .2556). 
However, the length of the time interval between samples was sig-
nificantly correlated with Ne (Fig. S2) with an R

2 value of 0.23 for the 
Jorde and Ryman (2007) method (p-value .0007; Fig. S2A), and with 
an R2 value of 0.18 with the Anderson (2005) method (p-value .0033; 
Fig. S2B). Removing localities with evidence of temporal disruption did 
not reduce significance of this correlation nor did removing outliers.

3.3 | Estimates of Ne based on SNP data

Estimates of Ne based on single nucleotide polymorphisms (SNPs) were 
completed with the same two methods that we used for microsatel-
lites; the Jorde and Ryman (2007) and Anderson (2005) methods. The 
dataset was a combination of newly genotyped samples and previously 
published data from Evans et al. (2015) and included 14,888 SNPs 
from an average of 15.9 individuals per time point. Ne estimates with 
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TABLE  1 Two-sample Ne estimates based on 12 microsatellites; locality, sampled years and sampled generations in parentheses counting 
from zero at the first time point sampled, harmonic mean number of mosquitos sampled (N), time interval spanning the two samples in 
generations (I), Ne estimates made with the Jorde and Ryman (2007) method in NeEstimator v2 (Do et al., 2014) (Ne

1) with lower and upper 95% 
confidence intervals (CI1), and Ne estimates made with the Anderson (2005) method in CoNe (Anderson, 2005) (Ne

2) with lower and upper 95% 
confidence intervals (CI2)

Locality Sampled years (generations) N I Ne
1 Lower CI1 Upper CI1 Ne

2 Lower CI2 Upper CI2

01 Madera, USA 2013 & 2015 (0 & 12) 51.4 12 287.9 173.5 430.9 551.0 223.9 4860.4

02 Tucson, USA 2012 & 2013 (0 & 7) 53.5 7 48.5 30.8 70.3 90.2 56.4 149.8

2012 & 2015 (0 & 21) 54.0 21 131.8 85.7 187.6 392.4 243.8 661.2

2013 & 2015 (7 & 21) 53.5 14 1172.8 759.0 1675.2 ∞ ∞ ∞

03 Houston, USAa 2009 & 2011 (0 & 18) 23.0 18 25.0 14.4 45.3 37.8 26.3 55.0

04 New Orleans, USA 2011 & 2012 (0 & 9) 53.2 9 84.0 57.9 115.0 604.6 289.6 2627.5

2011 & 2014 (0 & 27) 50.5 27 493.2 332.8 684.8 2233.4 916.3 ∞

2011 & 2015 (0 & 36) 37.7 36 223.2 148.9 312.2 548.9 327.2 1020.7

2012 & 2014 (9 & 27) 59.3 18 441.1 305.5 601.2 938.4 487.9 2661.2

2012 & 2015 (9 & 36) 42.4 27 269.9 187.5 367.2 401.7 242.9 727.7

2014 & 2015 (27 & 36) 40.7 9 162.6 111.2 223.5 197.7 108.4 454.7

05 Vaca Keys, USA 2006 & 2009 (0 & 36) 42.5 36 233.1 152.4 330.9 458.5 287.3 776.3

2006 & 2015 (0 & 84) 45.4 84 1180.5 775.1 1670.1 1796.0 1048.0 3605.4

2009 & 2015 (36 & 84) 44.8 48 253.8 167.4 358.0 570.9 378.7 896.5

06 Key West, USA 2009 & 2011 (0 & 24) 30.0 24 187.6 125.7 261.8 315.6 185.7 621.9

2009 & 2013 (0 & 48) 38.8 48 404.2 274.8 558.4 775.7 481.8 1398.4

2009 & 2016 (0 & 84) 38.8 84 2662.0 1783.6 3714.0 2888.6 1382.0 10506

2011 & 2013 (24 & 48) 37.2 24 84.6 56.2 118.6 242.9 163.4 374.2

2011 & 2016 (24 & 84) 37.2 60 314.3 208.2 442.1 750.7 482.5 1242.5

2013 & 2016 (48 & 84) 52.0 36 500.6 331.5 704.1 752.2 457.6 1366.2

07 Amacuzac, MX 2012 & 2013 (0 & 16) 54.0 16 184.5 113.5 272.5 222.0 132.0 400.4

2012 & 2014 (0 & 24) 53.5 24 260.4 162.4 381.3 250.7 154.8 417.7

2012 & 2016 (0 & 48) 53.0 48 310.5 191.0 458.5 487.2 295.9 831.3

2013 & 2014 (16 & 24) 53.5 8 43.4 26.3 64.6 67.7 43.9 106.3

2013 & 2016 (16 & 48) 53.0 32 174.9 105.4 261.8 258.7 165.7 412.9

2014 & 2016 (24 & 48) 52.5 24 98.0 59.1 146.7 177.6 114.3 281.8

08 Coatzacoalcos, MXa 2003 & 2008 (0 & 60) 41.2 60 47.3 27.9 71.9 65.7 46.8 91.4

09 Pijijiapan, MX 2006 & 2008 (0 & 24) 47.5 24 82.0 44.8 130.2 161.0 100.9 257.2

10 Patillas, PR 2012 & 2014 (0 & 24) 54.0 24 159.3 102.1 229.0 180.3 121.1 272.4

11 Jacobina, BR 2013 & 2014 (0 & 8) 60.5 8 38.8 27.4 52.2 91.3 60.2 141.9

2013 & 2015 (0 & 14) 59.5 14 114.5 72.7 165.7 281.8 173.2 507.1

2014 & 2015 (8 & 14) 60.0 6 226.2 147.8 321.0 58.0 39.8 85.5

12 Cachoeiro, BRa 2008 & 2010 (0 & 24) 30.9 24 40.0 25.3 58.1 174.8 118.7 267.9

2008 & 2012 (0 & 48) 30.9 48 240.2 150.7 350.4 696.5 412.1 1403.7

2010 & 2012 (24 & 48) 47.0 24 47.1 30.3 67.5 106.3 76.6 148.6

13 Goudiry, SEa 2007 & 2012 (0 & 60) 49.7 60 82.4 53.3 117.7 150.4 117.5 191.6

14 Yaounde, CM 2009 & 2014 (0 & 55) 50.3 55 232.4 168.2 306.9 520.9 394.1 691.7

2009 & 2015 (0 & 69) 50.7 69 485.9 352.4 640.6 1023.0 739.2 1453.3

2014 & 2015 (55 & 69) 54.5 14 72.3 52.3 95.4 178.4 133.1 244.6

15 Lunyo, UGa 2012 & 2013 (0 & 12) 53.5 12 35.3 24.9 47.6 71.2 54.3 93.5

16 Rabai, KE 2006 & 2009 (0 & 36) 33.7 36 724.9 543.0 932.7 3549.5 1317.9 ∞

2006 & 2012 (0 & 72) 21.1 72 202.9 148.3 266.0 228.8 161.1 331.6

2009 & 2012 (36 & 72) 22.3 36 109.6 80.4 143.3 121.5 85.0 177.6

(Continues)
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the Jorde and Ryman (2007) method averaged 166.0 (Figure 2) and 
ranged from 22.9 to 549.2 (Ne

1 in Table 2) with extremely narrow 95% 
confidence intervals that ranged from an absolute low of 22.4 (lower 
CI1 in Table 2) to an absolute high of 563.3 (upper CI1 in Table 2). Ne 
estimates with the Anderson (2005) method were not significantly dif-
ferent, but were on average 2.26 times higher (Fig. S3), and averaged 
375.2 and ranged from 33.6 to 977.1 (Ne

2 in Table 2) with 95% confi-
dence intervals that spanned from an absolute low of 32.0 (lower CI2 in 
Table 2) to an absolute high of 1214.3 (upper CI2 in Table 2).

3.4 | Estimates of Ne based on single samples

To confirm that estimates using the two-sample temporal methods 
used were not low-biased because of undetected temporal disruptions 
between sampling points, we also used a single-sample method based 
on linkage disequilibrium (LD) developed by Waples and Do (2008) 
in NeEstimator v2 (Do et al., 2014). These Ne estimates ranged from 
1.4 to 2526.3 with the exception of a single estimate indistinguish-
able from infinite, had a mean of 116.7 and a large variance with 95% 
confidence intervals that overlapped with infinity in about 15% of the 
estimates (Table S2). This indicates that single-sample estimates are 
lower than the two-sample estimates and strengthens the evidence 
that two-sample temporal methods used were not low-biased due to 
violation of assumptions.

4  | DISCUSSION

Estimates of Ne of the Aedes aegypti mosquito ranged from ~25 to 
~3,000 and averaged between 400 and 600 (Table 1, Figure 2). 
These results indicate relatively small breeding units for Ae. aegypti 

compared to most insects, including other mosquitoes. For example, 
both the census size and Ne of Anopheles gambiae (s.l.) in Africa have 
been estimated to be an order of magnitude greater than the esti-
mates for Ae. aegypti presented here (Lehmann, Hawley, Grebert, & 
Collins, 1998; Taylor, Toure, Coluzzi, & Petrarca, 1993). This has im-
mediate implications in design of successful genetic control programs. 
For example, it should be easier to genetically modify populations 
with smaller effective population sizes compared to larger ones, re-
gardless of the type of modification use.

Estimating Ne in natural populations is difficult and subject to er-
rors for a number of reasons. First, populations may experience consid-
erable migration between sampling time points or even replacement. 
Our PCA and phylogenetic analysis (Fig. S1 and S2) indicated that Ne 
estimates in five of the seventeen localities may be impacted by such 
temporal disruptions. Indeed, these localities (Houston, Coatzacoalcos, 
Cachoeiro, Goudiry, and Lunyo) showed lower Ne estimates on average 
(Table 1, Figure 2). Low Ne in these localities may have been caused 
by violations of the assumption that allele frequency changes are due 
exclusively to genetic drift rather than migration or population sub-
divisions. Nonetheless, removal of localities with suspected temporal 
disruptions increased average Ne estimates only slightly (Table 1), in-
dicating consistency of results. Ne estimates after removal of siblings 
showed that in some cases, the presence of siblings in the samples 
probably caused a small reduction in the inferred Ne (Table S4), as one 
would expect as the presence of related individuals will increase the 
variance in the estimated allele frequencies. However, in many cases 
there was almost no effect, and there was no significant difference in 
the overall mean of estimates (Table S4, Fig. S5).

Second, there was an indication in our data that there was an ef-
fect of length of time interval between sampling points on the Ne es-
timates; longer intervals produced larger Ne estimates (Fig. S4). This 

F IGURE  1 Sampled localities: (1) 
Madera, USA; (2) Tucson, USA; (3) Houston, 
USA; (4) New Orleans, USA; (5) Vaca Keys, 
USA; (6) Key West, USA; (7) Amacuzac, 
Mexico; (8) Coatzacoalcos, Mexico; (9) 
Pijijiapan, Mexico; (10) Patillas, Puerto 
Rico; (11) Jacobina, Brazil; (12) Cachoeiro, 
Brazil; (13) Goudiry, Senegal; (14) Yaounde, 
Cameroon; (15) Lunyo, Uganda; (16) Rabai, 
Kenya; and (17) Cairns, Australia

Locality Sampled years (generations) N I Ne
1 Lower CI1 Upper CI1 Ne

2 Lower CI2 Upper CI2

17 Cairns, AU 2009 & 2013 (0 & 48) 49.5 48 292.6 185.7 423.6 618.6 396.4 1006.7

2009 & 2015 (0 & 62) 46.5 62 328.2 203.3 482.6 552.0 358.3 878.5

2009 & 2015 (0 & 62) 47.8 14 305.4 189.2 449.0 193.2 111.3 365.8

aLocality with evidence of temporal shifts determined by principal components analysis (Fig. S1) and neighbor-joining phylogenetic analysis (Fig. S2).

TABLE  1  (Continued)
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suggests bias in samples separated by time intervals between 10 and 
84 generations. This bias is an expected outcome of the Jorde and 
Ryman (2007) algorithm due to the fixation of rare alleles during the 

interval sampled. However, an improvement of the original method 
(Jorde & Ryman, 1995) made in 2007 was meant to correct this bias 
(Jorde & Ryman, 2007). Our results suggest this correction did not 

TABLE  2 Two-sample Ne estimates based on 14,888 SNPs; locality, sampled years and sampled generations in parentheses counting from 
zero at the first time point sampled, harmonic mean number of mosquitos sampled (N), time interval spanning the two samples in generations 
(I), Ne estimates made with the Jorde and Ryman (2007) method in NeEstimator v2 (Do et al., 2014) (Ne

1) with lower and upper 95% confidence 
intervals (CI1), and Ne estimates made with the Anderson (2005) method in CoNe (Anderson, 2005) (Ne

2) with lower and upper 95% confidence 
intervals (CI2)

Locality
Sampled years 
(generations) N I Ne

1 Lower CI1 Upper CI1 Ne
2 Lower CI2 Upper CI2

04 New Orleans 2012 & 2015 (9 & 36) 11.0 27 186.9 182.1 191.7 267.2 247.5 292.5

06 Key West 2009 & 2016 (0 & 84) 12.0 84 549.2 535.2 563.3 620.2 592.0 645.0

11 Jacobina 2013 & 2014 (0 & 8) 21.3 8 33.6 35.5 33.6 33.6 32.0 35.0

2013 & 2015 (0 & 14) 20.3 14 147.5 144.0 151.1 977.1 700.0 1214.3

2014 & 2015 (8 & 14) 14.5 6 22.9 22.4 23.5 138.4 120.0 145.0

14 Yaounde 2014 & 2015 (55 & 69) 15.5 14 54.8 53.5 56.1 214.6 198.3 233.3

F IGURE  2 Two-sample Ne estimates 
made with the Jorde and Ryman (2007) 
method in NeEstimator v2 (Do et al., 2014) 
and with the Anderson (2005) method in 
CoNe (Anderson, 2005). Mean effective 
population size estimates (Ne), lower 
and parametric 95% confidence interval 
(CI) are displayed by locality, colored 
by the number of generations spanning 
the two samples used in each estimate 
(generations spanned). The average Ne 
across all estimates of each data type 
(μsats in dashed and SNPs in dotted) is 
displayed as a horizontal line. Estimates 
from localities with evidence of temporal 
shifts determined by principal components 
analysis (Fig. S1) and neighbor-joining 
phylogenetic analysis (Fig. S2) are marked 
with an asterix (*)
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completely remove the bias; however, they tested intervals up to only 
10 generations, while our samples span up to an estimated 84 genera-
tions. On the other hand, the Anderson (2005) method should be less 
biased by fixation of alleles than a moment based estimator like the 
one of Jorde and Ryman (2007) because it does not rely on an approx-
imate linear relationship between the magnitude of allele frequency 
change and genetic drift. Our results suggest that there may be some 
bias even with the Anderson (2005) method and indicate a need for 
further investigation of this issue.

Third, while we argue that the two-sample temporal method is 
generally better than single-sample estimates of Ne, we did consider 
these latter methods, and the results were very similar. Although the 
single-sample Ne estimates are somewhat lower (Table S2), this is 
added evidence that our two-sample results indicating relatively small 
Ne are robust as they are comparable across completely independent 
estimation methods.

Although lower than estimates in most other insects, our results 
are consistent with estimates made in previous studies of this species 
of mosquito, Ae. aegypti (Table S3). Work in Northern Australia based 
on microsatellites found that Ne averaged 692 (Endersby et al., 2011). 
Work in Indonesia based on microsatellites and SNPs found that Ne av-
eraged 467 excluding one infinite estimate (Rašić et al., 2015). Finally, 
work in Thailand based on microsatellites and EPIC found that Ne  
averaged 166 (Olanratmanee et al., 2013).

Estimates of census size (Nc) for adult Ae. aegypti using mark–re-
capture methods range from about 900 for villages in Rabai, Kenya 
(Lounibos, 2003) to 5,500 for a city in Brazil (Carvalho et al., 2015). 
The most intensive mark–recapture study on Ae. aegypti was carried 
out by Sheppard, Macdonald, Tonn, and Grab (1969) who performed 
23 releases over a full year in Bangkok, Thailand. The mean census 
size was 2,562 (both sexes) with a SD of 1,351 (Sheppard et al., 1969). 
Ae. aegypti census size has also been estimated by larval and pupal 
counts, but these are likely gross overestimates because they do not 
consider low survival rates to adulthood. For example, Dye (1984) 
found that less than 20% of larvae survive to mid-pupal stage (Dye, 
1984). Thus, we feel the studies cited above using adult mark–recap-
ture methods are the best indicator of census size of adult breeders, 
the relevant comparison to Ne. Our estimates, and previous ones, of Ne 
in the range of 100-700 and of Nc from one to five thousand, means 
that Ne/Nc for this species is 10%–30%—in line with most animals.

Interestingly, as pointed out above, the mosquito An. gambiae has 
been estimated to have an Ne about an order of magnitude greater 
than Ae. aegypti, Nc for An. gambiae has been estimated to be nearly 
an order of magnitude greater than these Nc estimates for Ae. aegypti 
(Touré et al., 1998). So despite the large difference in absolute popu-
lation sizes, Ne/Nc for these two mosquitoes remains very similar. This 
suggests that estimates of Ne can serve as reliable predictors of rela-
tive Nc and vice versa, factors relevant to planning and implementing 
genetic control programs.

The relatively small estimates of Ne reported here for Ae. aegypti 
almost certainly reflect the relatively short range of active dispersal 
of this mosquito (Harrington et al., 2005; Maciel-De-Freitas, Codeço, 
& Lourenco-De-Oliveira, 2007; Muir & Kay, 1998; Russell, Webb, 

Williams, & Ritchie, 2005), but see (Reiter, 2007). The results are 
consistent with a patchy metapopulation structure, sensu Harrison 
(1991), with localized breeding units even when quasi-continuously 
distributed at a larger scale. For example, our samples from Yaounde, 
Cameroon, came from a single neighborhood and the estimated 
Ne (263 and 574 for the two methods) cannot represent the entire 
180 km2 of available habitat in this city of 2.5 million people.

5  | CONCLUSION

In summary, we have shown that Ne in Ae. aegypti is relatively small 
across our worldwide sample (Figure 2), suggesting that these mosqui-
tos form localized breeding units even in large cities where the regional 
census size is large. This is important because Ae. aegypti has become 
a model system in design of control programs using genetic methods 
that aim to suppress or genetically modify populations to decrease 
their efficiency at transmitting pathogens (McGraw & O’Neill, 2013). 
Methods of genetically modifying vector populations that rely on in-
undation and replacement (e.g., that of Powell & Tabachnick, 2014) 
are quite feasible with such small populations. On the other hand, 
such small breeding units must be quite spatially limited. This means 
genetic modification over a larger area will require many local releases 
spatially separated across a target area. Even those genetic modifica-
tions based on gene drive would need to be seeded in many locations 
across a target area. The very slow spread of successful Wolbachia 
replacement in local sites in an Australian city is consistent with this 
view of Ae. aegypti population structure (Schmidt et al., 2017).

These estimates of Ne also indicate that genetic drift is quite strong 
in Ae. aegypti consistent with the remarkable population genetic dif-
ferentiation observed for neutral markers (Brown et al., 2011; Gloria-
Soria, Ayala, et al., 2016; Powell & Tabachnick, 2014). This strength 
of drift needs to be considered in genetic modification programs. 
Even selectively advantageous alleles could drift out of populations 
over time in such small populations, suggesting a need for repeated 
releases and long-term monitoring.
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